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Abstract
While automated optical inspection (AOI) of surfaces such 
as fi lms/nonwovens/paper and their subsequent converted/
laminated products has grown increasingly powerful and 
versatile, the deployment into day-to-day operations can at 
times be diffi cult, particularly as operational and resident 
engineering staffi ng are reduced. It has, therefore, been 
important to focus the development at AOI manufacturers 
on tools and methods toward the goal of making AOI 
systems essentially hands-off for day-to-day operation and 
simplify their initial deployment as much as possible. This is 
done using various forms of artifi cial intelligence (AI), which 
automate tasks such as adjusting light levels, detection 
levels and defect classifi cation. This article will introduce 
how these functions generally work and showcase studies 
of their usage.

Three steps to optimize an AOI system

Once an automated optical inspection (AOI) system has been 
physically installed and calibrated, it is time to adjust it for 

the fi rst product(s). Modern AOI usually features multiple views, 
such as a contrast transmission view and a view that is sensitive 
to distortions. Multiple views signifi cantly improve not only the 
detection capabilities but, even more so, the ability to properly 
differentiate between different types of defects (classifi cation). 
The cost of this added capability is that all these different views 
need to be optimized for a product and their classifi cation needs 
to be developed – using even more defect attributes.

The deployment or dial-in process for a given product to be 
inspected can be broken into three fundamental steps:
x� Adjust light levels and camera gains for each view to optimize 

the contrast for defect detection.
x� Determine reasonable trigger levels (thresholds) for defect 

capture.
x� Develop a classifi cation based on the multiple images the 

system captured of a defect.

Automatic adaption to material
As our fi rst step, we need to look at setting camera gains and 
light power levels to get the best contrast in each of the potential 
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multiple views. While this generally is a straightforward task, it 
can be a bit tricky in some optical confi gurations. 

However, the optimization usually is an iterative process where 
a procedure can be formulated that operators or maintenance 
persons can follow. A simple procedure could be as follows:
1. Determine the current average brightness in the fi rst view.
2. If it is too dark, increase the light power or camera gain; if it 

is too bright, decrease accordingly.
3. Determine the average brightness again. If it is on target, go 

to Step 1 for the next view; otherwise, go to Step 2.

Looks simple enough, doesn’t it? Look at Step 2: Adjust light 
power or camera gain? The AOI system expert would look at 
more input, such as overall imaging-system noise or the light 
source (is it maxed out already?). In some views, particularly 
in the inspection of nonwovens or otherwise textured materials, 
there even are multiple lights that need to be properly balanced to 
achieve optimum imaging. All these additional “ifs-and-whens” 
quickly will make the task diffi cult for operators to accomplish 
during a product change while they are otherwise occupied with 
changing the machine over to produce the new product. 

This is where one of the most classical forms of artifi cial 
intelligence can help (see Figure 1). The procedures end up 

FIGURE 1. Adaption to material (bristle on low basis-weight 
nonwoven)
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being essentially incremental 
control algorithms supervised 
by a simple expert system. The 
system takes on the role of 
“expert” in adjusting views by 
following a set of procedures 
and making decisions that it 
has been programmed to do. 
The AI can do this task so 
much faster than the human 
experts and without the 
risk of making mistakes the 
humans might run into. As a 
matter of fact, even this fi rm’s 
experienced engineers who are 
experts in manual adjustments 
now prefer to use “Automated 
Adjustment to Material” for 
its accuracy and speed as 
everything is settled literally 
within seconds.

Intelligent detection 
threshold adjustment
The next step takes us to 
adjusting the detection of abnormalities to a reasonable level 
the system can process (see Figure 2). Most all materials exhibit 
some form of “material noise,” which can best be described 
as somewhat microscopic variation in the material caused by 
surface roughness, haziness or patterns in the material, such as 
embossing. For nonwovens, these even can be rather large area 
variations, which within certain limits are normal for the material. 

The usual strategy for adjusting these thresholds would be to look 
at the “material noise” and place thresholds at a safe distance. 
Depending on the process, it is possible that the material noise 
fl uctuates within a product run or from one run of a specifi c 
product to the next. In the past, AOI-system vendors sometimes 
provided a single “sensitivity adjuster” knob. While a convenient 
quick fi x, it happens frequently that, once a system has been de-
sensitized with this knob because higher material noise choked 
the system, it rarely is reverted to its original sensitivity once 
material with lesser noise is inspected. 

What is desired is system intelligence that automatically and 
continuously determines the best detection sensitivity based on 
continuously observing the material noise and then adjusting 
detection thresholds in a fashion that the system’s defect-
processing capabilities are best used. 

This is accomplished using intelligent noise-level measurement 
combined with system-load monitoring where the system itself 
learns where its limits lie. The strategy followed here is basically: 
“Push the system so that it looks at as many abnormalities as 
possible without overloading.” Modern main processors with 

FIGURE 2. Example of adaptive thresholds and MIDA X image processing
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up to 64 processor cores can provide unprecedented image 
processing and defect-classifi cation power that was unheard of 
even a few years back. 

Artifi cial intelligence for defect detection and 
classifi cation purposes (Machine Learning):
Certainly, the most signifi cant impact of AI methods on 
automated inspection has been made with actual defect 
segmentation and classifi cation. An abundance of new research 
has emerged in the fi eld of object recognition in general to 
segregate objects within an image (or video) and quickly 
categorize them. Autonomous vehicles come to mind, which 
need to quickly differentiate what they are “seeing” and track the 
objects’ movements relative to the car.

In the image-processing world, the capability to segregate objects 
within an image is called segmentation. A long used and trusted 
method in image processing is to fi rst identify an object’s outline 
by means of simple edge-detection fi lters that use essentially one 
or multiple fi xed thresholds on image gradients (rate of change). 
This works well for objects exhibiting a high contrast around 
their perimeter. When that is not the case and the object gradually 
fades into the background, these methods will not capture the 
entire object but possibly just a small, high contrast portion. For 

example, if we take the insect 
shown in Figure 2 (top left), 
we would end up detecting the 
torso (bottom left) but would 
miss the legs and wings. The 
classifi cation would have a 
hard time identifying that it is 
indeed an insect. 

In the past, it would take 
experienced image processing 
engineers and potentially 
a lot of time to develop 
appropriate image fi ltering 
and segmentation algorithms. 
Today, AI essentially can take 
a lot of this tedious work off 

our hands. This works by simply defi ning the outline of a number 
of captured defects in the image as a method to tell the AI system 
what our desired result of the segmentation would be. The AI 
then works through the images with literally hundreds or even 
thousands of different image processing methods and identifi es 
the best suitable one, resulting in advanced image segmentation 
as observed in Figure 2 (bottom left) – the MIDA X image. On 
particularly tricky applications, this optimization task may require 
immense cloud computing power that this fi rm makes available to 
its vision-system customers. 

Now that we have segmented defects successfully, the fi nal step 
is to classify them. Classifi cation means that the inspection 
system, based on the one or multiple images it took of a defect, 
determines automatically the defect type. A simple example 
would be that we want the system to differentiate between 
particles on the surface from those embedded into the material 
(i.e., a gel in a plastic fi lm).

The classic way of doing this is for an experienced application 
engineer with in-depth knowledge of numerical values that 
describe a detected defect (features) to write rules by hand. On 
a single image with obviously different appearance, this works 
well. Once multiple views are used, the task can become very 
complex and will, in all likelihood, not lead to the best results. 
For a few decades now, auto-classifi ers of different fl avors have 
been implemented in AOI systems to simplify this work. No 
matter which general machine-learning technology is used, for it 
to produce a result, all need to be “taught” what we are looking 
for. What that means for our inspection system is that we need 
to collect a number of defects, which are imaged by the system 
and sorted into various categories. Once a system is physically 
installed, it initially will be set to simply capture everything that 
is different from the material itself. The user then will review 
the captured defect and collect similar defects into individual 
buckets. This process sometimes takes as little as a few hours but 
highly depends on the actual defect rate and products run.

FIGURE 3. C5.0 classifi cation with boosting
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Three object-recognition algorithms
Once we have a reasonable library of categorized defect images, 
we now have a good foundation to further improve classifi cation. 
There are essentially three groups of object recognition 
algorithms.

A Decision Tree is basically a set of branches in a road where 
the answer to a True/False question decides on which branch to 
continue. Finally, the defect would arrive at one of the “leaves” of 
the decision tree, where each leaf represents a specifi c defect. 

An enhanced version of the above-described binary tree is the 
so-called C5.0 Algorithm. It basically states for each defect how 
certain it is of the category into which it would put this defect. 
For example, it could state that it is calling a defect “a gel” with 
70% certainty and “a carbon” with 30% certainty. 

We now have probabilities associated with the decision a 
particular C5.0 tree delivers and now can apply a technique 
called boosting (see Figure 3). Because decision trees can 
deliver somewhat different results based on, for instance, 
which numerical feature is looked at fi rst, we can have the C5.0 
engine create multiple decision trees and then combine their 
probabilities. This is essentially like having multiple people look 
at a defect and collect their decisions. As a result, we obtain a 

combined set of defect-class probabilities and can classify the 
defect based on which one has the highest probability. However, 
we also can set a threshold, say 60%, which would provide a 
defect-class decision only if it is above 60%, and otherwise 
call it “unspecifi ed.” This permits us to instruct the AI system 
to provide a result only when there is a clear decision. Call it a 
“decisive vote.”

One advantage of decision-tree-based auto-classifi ers in industrial 
applications is that they need a comparatively small set of 
teaching samples. We also may follow the information that leads 
to a classifi cation decision through the decision trees.

The user then can decide with a single “knob” as to the minimum 
confi dence the classifi er needs to have in its decision to actually 
make the call. Defects where the classifi er is not certain enough 
would be binned into an unknown category for further refi nement. 

Frequently, there are cases where we already know how to 
perfectly classify a defect and do not need AI (see Figure 4). 
A roll impression has a distinct repeat distance, for example. 
A good AI classifi cation system needs to provide a means to 
introduce rules like this and either bypass or complement the AI 
classifi cation.
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Neural Networks have been used for machine learning for many 
decades as well. Between the late 1990s and early 2000s, there 
had not been much progress on fundamental issues with high 
dependency on carefully selected sample sets because neural 

networks become unpredictable when extrapolating outside the 
sample range. Recently rekindled research, with a key paper 
on the subject of deep learning in 2012, has vastly improved 
their suitability in the fi eld of image-based object recognition 

and has provided signifi cantly 
better performance in real-world 
applications. For industrial 
uses, the fact that the decision-
making of a neural network is not 
transparent makes them diffi cult 
to gradually improve other than 
by further refi ning the training set. 
There also is a general consensus 
that neural networks require a 
larger training set compared with 
the C5.0 approach.

Another AI method of object 
recognition is a Support Vector 
Machine (SVM), which is 
mentioned here for completeness 
only. Teaching methods for SVM 
are highly complex and do not suit 
themselves well for non-expert 
training attempts. 

Importance of a 
Comprehensive Tool Set 
Two key aspects in creating a 
sample set for machine learning 
are consistent labeling (what do 
we want the AI system to call this 
defect?) and annotation (what is 
the outline of the defect?).

This fi rm has recognized the 
importance of a good toolset 
to easily facilitate a consistent 
defect-sample collection. After 
all, we are teaching the machine 
here just like a schoolteacher 
instructs children. If the teachings 
are inconsistent or confl icting, the 
results will be just as inconsistent 
and confused. 

We have, therefore, designed a 
workbench that specifi cally is 
geared toward assisting the user 
in assembling the defect-sample 
libraries (see Figure 5). For the 
labeling part, the workbench will, 
after the user has categorized a 
few examples of a defect, provide 
suggestions as to which category 

Classification 
Confidence

FIGURE 4. On-the-fl y defect classifi cation with confi dence information

FIGURE 5. Defect library creation workbench
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FIGURE 6. Inspection systems at work 

a defect may belong. So essentially, the workbench tells the user, 
“I think this looks like this defect,” and even provides a level of 
confi dence it has in the recommendation.

Achieved improvement of classifi cation 
Table 1 shows the improvements made between a single (auto-
learned) decision-tree classifi er and a boosted C5.0 algorithm.
How good a classifi er ultimately becomes still depends highly 
on the quality of the training set, how representative it is of the 
defects occurring and how many views the system provides to 
permit differentiation between defects that look alike in a single 
view.

Summary
Choosing the right artifi cial intelligence (AI) method for each 
task when setting up and optimizing an automated optical 
inspection (AOI) system has signifi cantly reduced the time and 
effort required (see Figure 6). To use AOI systems to their full 
potential, users no longer need a person who is an expert in the 
operation and settings of vision systems. The users now can 
concentrate on assessing their actual product-quality defi nition 
and quickly use the system not only for quality assurance but 
to identify process issues and correct them. More accurate 

TABLE 1. Improvement between single decision-free classifi er and boosted C5.0

Classifi er Error Rate 

Library Rule-Based [%] Boosted DT [%] Improvement [%]

Fiber Mat (4 views) 12.30 7.90 35.77 

Label (single view) 28.20 23.50 16.66

OCR Experiment (single view, very good training set) 1.20 0.90 25.0

Packaging Film 1 (single view) 29.80 20.00 32.9

Packaging Film 2 (2 views) 8.80 7.70 12.5

Rolled Steel (2 views) 31.30 16.20 48.24

Average Improvement 28.51

data provided by the AOI not 
only ensures shipped quality but 
also yields signifi cant process 
improvements and optimizes 
production output.  �

Further Reading
Throughout this article, a few key words 
are in italics. These indicate terms that 
were used for Internet searches when 
researching the background for this 
article. 
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